Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propane-1,3-diammonium bis[aquachlorido(4-hydroxypyridine-2,6-dicarboxylato- $\kappa^3 O^2$,N,O⁶)mercurate(II)] tetrahydrate

Hossein Aghabozorg,^a* Sara Bagheri,^b Mohammad Heidari,^a Mohammad Ghadermazi^c and Jafar Attar Gharamaleki^a

^aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, ^bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and ^cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran

Correspondence e-mail: haghabozorg@yahoo.com

Received 19 June 2008; accepted 21 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.022; wR factor = 0.047; data-to-parameter ratio = 16.3.

The reaction of mercury(II) chloride dihydrate, propane-1,3diamine and 4-hydroxypyridine-2,6-dicarboxylic acid in a 1:1:1 molar ratio in aqueous solution, resulted in the formation of the title compound, $(C_3H_{12}N_2)[Hg(C_7H_3NO_5)Cl(H_2O)]_{2}$ $4H_2O$ or $(pnH_2)[Hg(hypydc)Cl(H_2O)]_2 \cdot 4H_2O$ (where pn is propane-1,3-diamine and hypydcH₂ is 4-hydroxypyridine-2,6dicarboxylic acid). The metal atom is coordinated by one chloride group, one water molecule *cis* to the chloride ligand and one $(hypydc)^{2-}$ ligand. The coordinated water molecule is almost perpendicular to the plane of the aromatic ring of $(hypydc)^{2-}$. The geometry of the resulting HgClNO₃ coordination can be described as distorted square-pyramidal. This structure also contains propane-1,3-diammonium (site symmetry 2) as a counter-ion and four uncoordinated water molecules. There is a wide range of non-covalent interactions consisting of hydrogen bonding [of the types O-H···O, N-H···O and C-H···O, with D···A ranging from 2.548 (5) to 3.393 (6) Å] and ion pairing.

Related literature

For related literature, see: Aghabozorg *et al.* (2007, 2008); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006); Aghabozorg, Ghasemikhah *et al.* (2006); Ramezanipour *et al.* (2005).

Experimental

Crystal data

$(C_3H_{12}N_2)[Hg(C_7H_3NO_5)Cl-$
$(H_2O)]_2 \cdot 4H_2O$
$M_r = 1018.53$
Monoclinic, $C2/c$
a = 29.2207 (13) Å
b = 6.7630(3) Å
c = 15.4913 (7) Å

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.284, T_{max} = 0.457

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.047$ S = 0.993041 reflections

9362 measured reflections 3041 independent reflections

 $0.11 \times 0.08 \times 0.07 \text{ mm}$

 $\beta = 114.5130 \ (10)^{\circ}$

V = 2785.5 (2) Å²

Mo $K\alpha$ radiation

 $\mu = 11.28 \text{ mm}^{-1}$

T = 100 (2) K

Z = 4

3041 independent reflections 2632 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$

187 parameters H-atom parameters constrained $\Delta\rho_{max}=0.79$ e Å^{-3} $\Delta\rho_{min}=-0.84$ e Å^{-3}

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3···O4 ⁱ	0.92	1.63	2.548 (5)	173
$N2-H1C\cdots O3W^{ii}$	0.89	2.02	2.830 (5)	150
$N2-H1D\cdots O2W^{iii}$	0.89	2.30	3.096 (6)	149
$N2-H1E\cdots O2W^{iv}$	0.89	1.96	2.824 (6)	165
$O1W-H1A\cdots O5^{ii}$	0.82	2.08	2.854 (5)	157
$O1W-H1B\cdots O2^{v}$	0.82	2.06	2.837 (6)	157
$O2W - H2B \cdots O1$	0.85	1.98	2.771 (6)	154
$O2W - H2C \cdot \cdot \cdot O2^{vi}$	0.85	1.94	2.777 (5)	169
$O3W-H3A\cdots O3^{v}$	0.85	2.30	3.019 (6)	142
$O3W-H3B\cdots O5$	0.85	1.93	2.766 (6)	169
$C8 - H8B \cdots O1$	0.97	2.45	3.393 (6)	163

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 1, -z + 2; (iv) x, y - 1, z; (v) $x, -y + 1, z + \frac{1}{2}$; (vi) $-x + 1, y, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2244).

References

- Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, 03174–03176.
- Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.
- Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.
- Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2269–m2271.
- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ramezanipour, F., Aghabozorg, H. & Soleimannejad, J. (2005). Acta Cryst. E61, m1194-m1196.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1065-m1066 [doi:10.1107/S1600536808022897]

Propane-1,3-diammoniumbis[aquachlorido(4-hydroxypyridine-2,6-dicarboxylato- $\kappa^3 O^2, N, O^6$)mercurate(II)] tetrahydrate

H. Aghabozorg, S. Bagheri, M. Heidari, M. Ghadermazi and J. Attar Gharamaleki

Comment

Recently, we have defined a plan to prepare water soluble proton-transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which protons transfer from pyridine-2,6-dicarboxylic acid, pydcH₂, and benzene-1,2,4,5-tetracarboxylicacid, btcH₄, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen). These resulted in the formation of some novel proton transfer compounds such as (pnH₂)(pydc).(pydcH₂).2.5H₂O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH₂)₂(btc).2H₂O (Aghabozorg, *et al.*, 2007) and (phenH)₄(btcH₃)₂(btcH₂) (Aghabozorg, *et al.*, 2008).

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively.

The Hg^{II} atom is five-coordinated by one chloro group, one water molecule and one 4-hydroxypyridine-2,6-dicarboxylate, or $(hypydc)^{2-}$, group which is coordinated through one pyridine N atom and two carboxylate O atoms. These distances are in good agreement with our two recently reported Hg^{II} structures (Aghabozorg, Ghasemikhah, Ghadermazi, *et al.*, 2006; Ramezanipour *et al.*, 2005).

The sum of the Cl1—Hg1—O1, O1—Hg1—N1, N1—Hg1—O4 and O4—Hg1—Cl1 bond angles equals 361.33 °, which indicates that these four atoms are almost located in the plane. As it can be seen, the O1W atom of the coordinated water molecule occupies the axial position, while the O1, O4, N1 and Cl1 atoms form the equatorial plane of the square pyramid. The O1W—Hg1—Cl1, O1W—Hg1—N1, O1W—Hg1—O1 and O1W—Hg1—O4 angles are 94.63 (7), 96.83 (11), 91.72 (9) and 82.81 (9)°, respectively, indicating that the coordinated water molecule is located at *cis* position to the chloro ligand and is also almost perpendicular to the square plane of the pyramid. The molecular structure of the title compound also contains propane-1,3-diammonium (site symmetry 2) as counter-ion and four uncoordinated water molecules. In the crystal structure, there is a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.548 (5) Å to 3.393 (6) Å) and ion pairing (Table 1).

Experimental

Aqueous solutions of HgCl₂.2H₂O (76 mg, 0.2 mmol), propane-1,3-diamine (18 mg, 0.2 mmol) and 4-hydroxypyridine-2,6-dicarboxylic acid (72 mg, 0.2 mmol) were mixed in a 1:1:1 molar ratio, and the reaction mixture was heated at about 313 K for 2 h. Colourless crystals of the title compound were obtained from the solution after three weeks at room temperature.

Refinement

The hydrogen atoms of the NH₃ and OH groups, and also H atoms of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All H(N) and H(O) atoms were refined in isotropic approximation in rigid model, the H(C) atoms were refined in isotropic approximation in riding model with with the U_{iso} (H) parameters equal to 1.2 U_{eq} (Ci) and 1.5 U_{eq} (Ci) for OH, NH3 group and water molecules, where U(C) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Figures

Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code A: -x + 1, y, -z + 3/2.

Fig. 2. The crystal packing of the title compound viewed down the *b* axis, hydrogen bonds are shown as dashed lines.

$\label{eq:propane-1,3-diammonium} Propane-1,3-diammonium bis[aquachlorido(4-hydroxypyridine-2,6-dicarboxylato-\kappa^3O^2, N, O^6) mercurate(II)] tetrahydrate$

Crystal data

$(C_{3}H_{12}N_{2})[Hg(C_{7}H_{3}NO_{5})Cl(H_{2}O)]_{2}\cdot 4H_{2}O$	$F_{000} = 1928$
$M_r = 1018.53$	$D_{\rm x} = 2.429 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 29.2207 (13) Å	Cell parameters from 2868 reflections
b = 6.7630 (3) Å	$\theta = 3-27^{\circ}$
c = 15.4913 (7) Å	$\mu = 11.28 \text{ mm}^{-1}$
$\beta = 114.5130 \ (10)^{\circ}$	T = 100 (2) K
V = 2785.5 (2) Å ³	Prism, colourless
Z = 4	$0.11 \times 0.08 \times 0.07 \text{ mm}$
Data collection	
Bruker SMART APEXII	

3041 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	2632 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 100(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -37 \rightarrow 36$
$T_{\min} = 0.284, T_{\max} = 0.457$	$k = -8 \rightarrow 8$
9362 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.047$	$w = 1/[\sigma^2(F_0^2) + (0.02P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.003$
3041 reflections	$\Delta \rho_{max} = 0.79 \text{ e} \text{ Å}^{-3}$
187 parameters	$\Delta \rho_{min} = -0.84 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å	2)
--	---	---

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.360437 (6)	0.72342 (2)	0.843452 (11)	0.01284 (6)
Cl1	0.40073 (4)	0.88117 (16)	0.98816 (7)	0.0205 (2)
01	0.41510 (10)	0.6883 (4)	0.7583 (2)	0.0163 (6)
O2	0.40827 (11)	0.6472 (5)	0.6102 (2)	0.0200 (7)
O3	0.22507 (10)	0.4439 (4)	0.43123 (19)	0.0161 (6)
H3	0.2422	0.4065	0.3956	0.024*
O4	0.27295 (10)	0.6300 (4)	0.8299 (2)	0.0159 (6)
O5	0.19566 (10)	0.6269 (5)	0.7138 (2)	0.0173 (6)
N1	0.31418 (12)	0.6356 (5)	0.7000 (2)	0.0115 (7)
C1	0.33511 (15)	0.6083 (6)	0.6378 (3)	0.0118 (8)

C2	0.30679 (15)	0.5421 (6)	0.5469 (3)	0.0135 (9)
H2A	0.3218	0.5200	0.5053	0.016*
C3	0.25554 (15)	0.5084 (6)	0.5177 (3)	0.0118 (9)
C4	0.23390 (15)	0.5464 (6)	0.5813 (3)	0.0120 (8)
H4A	0.1994	0.5324	0.5627	0.014*
C5	0.26445 (15)	0.6044 (6)	0.6713 (3)	0.0113 (8)
C6	0.39097 (15)	0.6514 (6)	0.6713 (3)	0.0130 (8)
C7	0.24210 (15)	0.6239 (6)	0.7438 (3)	0.0106 (8)
N2	0.47091 (14)	0.1672 (6)	0.8789 (3)	0.0266 (9)
H1C	0.4384	0.1443	0.8438	0.040*
H1D	0.4744	0.2326	0.9311	0.040*
H1E	0.4873	0.0528	0.8949	0.040*
C8	0.49190 (17)	0.2877 (7)	0.8234 (3)	0.0254 (11)
H8A	0.5237	0.3455	0.8659	0.030*
H8B	0.4689	0.3945	0.7916	0.030*
С9	0.5000	0.1595 (9)	0.7500	0.0249 (15)
H9A	0.4711	0.0763	0.7190	0.030*
O1W	0.38232 (10)	0.3754 (4)	0.91250 (19)	0.0169 (6)
H1A	0.3582	0.3001	0.8895	0.025*
H1B	0.3848	0.3976	0.9663	0.025*
O2W	0.50594 (11)	0.7731 (4)	0.9089 (2)	0.0245 (7)
H2B	0.4842	0.7451	0.8535	0.037*
H2C	0.5315	0.7479	0.8977	0.037*
O3W	0.12234 (11)	0.6629 (5)	0.7822 (2)	0.0245 (7)
H3A	0.1428	0.6436	0.8395	0.037*
H3B	0.1438	0.6364	0.7600	0.037*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.00977 (9)	0.01538 (9)	0.01123 (8)	-0.00051 (7)	0.00222 (6)	-0.00185 (7)
Cl1	0.0158 (5)	0.0230 (6)	0.0160 (5)	0.0004 (4)	-0.0002 (4)	-0.0066 (4)
O1	0.0102 (15)	0.0221 (16)	0.0141 (15)	-0.0007 (12)	0.0025 (12)	-0.0031 (13)
O2	0.0127 (16)	0.0302 (17)	0.0187 (16)	-0.0032 (13)	0.0082 (13)	0.0011 (14)
O3	0.0106 (15)	0.0279 (17)	0.0084 (14)	-0.0034 (12)	0.0026 (12)	-0.0056 (12)
O4	0.0095 (15)	0.0257 (17)	0.0120 (15)	-0.0008 (12)	0.0038 (12)	-0.0012 (13)
O5	0.0103 (16)	0.0285 (17)	0.0128 (15)	0.0006 (13)	0.0044 (13)	-0.0003 (13)
N1	0.0085 (17)	0.0113 (16)	0.0103 (17)	-0.0020 (13)	-0.0004 (14)	-0.0009 (14)
C1	0.012 (2)	0.010 (2)	0.012 (2)	0.0019 (15)	0.0034 (17)	0.0010 (16)
C2	0.017 (2)	0.011 (2)	0.014 (2)	0.0006 (16)	0.0073 (18)	0.0031 (16)
C3	0.013 (2)	0.011 (2)	0.008 (2)	-0.0001 (16)	0.0018 (18)	0.0040 (15)
C4	0.008 (2)	0.015 (2)	0.009 (2)	0.0020 (16)	0.0006 (17)	0.0015 (16)
C5	0.010 (2)	0.011 (2)	0.014 (2)	0.0012 (15)	0.0068 (18)	0.0022 (16)
C6	0.012 (2)	0.0094 (19)	0.016 (2)	0.0002 (16)	0.0040 (18)	0.0009 (17)
C7	0.012 (2)	0.0068 (19)	0.012 (2)	0.0007 (15)	0.0039 (17)	-0.0015 (15)
N2	0.018 (2)	0.028 (2)	0.031 (2)	0.0039 (17)	0.0067 (18)	-0.0086 (18)
C8	0.013 (2)	0.017 (2)	0.033 (3)	0.0037 (18)	-0.004 (2)	-0.003 (2)
C9	0.013 (3)	0.017 (3)	0.040 (4)	0.000	0.005 (3)	0.000

O1W	0.0174 (17)	0.0173 (15)	0.0139 (15)	-0.0014 (12)	0.0046 (13)	-0.0020 (12)
O2W	0.0126 (16)	0.0283 (18)	0.0305 (18)	0.0014 (13)	0.0067 (14)	-0.0098 (15)
O3W	0.0126 (16)	0.039 (2)	0.0191 (16)	0.0034 (14)	0.0037 (14)	0.0031 (15)
Geometric para	meters (Å, °)					
Hg1—N1		2.151 (3)	C2—	H2A	0.9.	300
Hg1—Cl1		2.3151 (10)	C3—	C4	1.39	97 (5)
Hg1—O1		2.469 (3)	C4—	C5	1.30	55 (6)
Hg1—O1W		2.555 (3)	C4—	Hg1 ⁱⁱ	4.04	49 (4)
Hg1—O4		2.556 (3)	C4—	H4A	0.92	300
Hg1—C1		3.058 (4)	С5—	C7	1.52	21 (5)
Hg1—C5		3.069 (4)	C7—	Hg1 ⁱⁱ	3.84	14 (4)
Hg1—O5 ⁱ		3.117 (3)	N2—	C8	1.48	39 (6)
Hg1—C6		3.182 (4)	N2—	H1C	0.89) 00
Hg1—C7		3.219 (4)	N2—	H1D	0.89) 00
Hg1—O3W ⁱ		3.700 (3)	N2—	H1E	0.89) 00
Hg1—C7 ⁱ		3.844 (4)	C8—	С9	1.52	24 (6)
01—C6		1.261 (5)	C8—	H8A	0.9	700
O2—C6		1.244 (5)	C8—	H8B	0.9	700
O3—C3		1.337 (5)	С9—	C8 ⁱⁱⁱ	1.52	24 (6)
O3—H3		0.9220	С9—	H9A	0.90	501
O4—C7		1.263 (5)	O1W-	—H1A	0.82	205
O5—C7		1.239 (5)	O1W-	—H1B	0.8	199
O5—Hg1 ⁱⁱ		3.117 (3)	O2W-	—H2B	0.8	500
N1-C5		1.348 (5)	O2W-	—H2C	0.84	199
N1—C1		1.351 (5)	03W-	—Hol ⁱⁱ	3.70	00 (3)
C1—C2		1.379 (6)	03W-	—H3A	0.8	501
C1—C6		1.522 (5)	O3W-	-H3B	0.8	501
C2—C3		1.392 (6)				
N1—Hg1—Cl1		167 66 (9)	C3—	03—Н3	112	8
N1—Hg1—O1		71.94 (11)	C7—	04—Hg1	110	.2 (2)
Cl1—Hg1—O1		112.32 (7)	C7—	05_Hg1 ⁱⁱ	117	.2 (2)
N1—Hø1—O1W		96.83 (11)	C5—	N1—C1	119	(2)
Cl1—Hg1—O1W	/	94.63 (7)	C5—	N1—Hg1	120	.9 (3)
O1—Hg1—O1W		91.72 (9)	C1—	N1—Hg1	119	.9 (3)
N1—Hg1—O4		70.64 (11)	N1—	C1—C2	121	.0 (4)
Cl1—Hg1—O4		106.43 (7)	N1—	C1—C6	118	.0 (3)
01—Hg1—O4		141.18 (9)	C2—	C1—C6	121	.0 (4)
01W—Hg1—O4		82.81 (9)	C2—	C1—Hg1	158	.4 (3)
N1—Hg1—C1		22.53 (11)	C6—	C1—Hg1	80.5	5 (2)
Cl1—Hg1—C1		158.80 (8)	C1—	С2—С3	119	.6 (4)
O1—Hg1—C1		49.41 (10)	C1—	C2—H2A	120	.2
O1W—Hg1—C1		96.44 (10)	C3—	C2—H2A	120	.2
O4—Hg1—C1		92.87 (10)	03—	C3—C2	123	.9 (4)
N1—Hg1—C5		22.16 (11)	03—	C3—C4	117	.3 (4)
Cl1—Hg1—C5		151.22 (8)	C2—	C3—C4	118	.8 (4)

O1—Hg1—C5	94.09 (10)	C5—C4—C3	118.5 (4)
O1W—Hg1—C5	95.85 (10)	C5—C4—Hg1 ⁱⁱ	95.5 (2)
O4—Hg1—C5	48.81 (9)	C3—C4—Hg1 ⁱⁱ	131.7 (3)
C1—Hg1—C5	44.68 (10)	C5—C4—H4A	120.7
N1—Hg1—O5 ⁱ	85.23 (10)	C3—C4—H4A	120.7
Cl1—Hg1—O5 ⁱ	82.43 (6)	N1—C5—C4	122.7 (4)
O1—Hg1—O5 ⁱ	108.22 (8)	N1—C5—C7	118.5 (3)
O1W—Hg1—O5 ⁱ	159.50 (8)	C4—C5—C7	118.7 (3)
O4—Hg1—O5 ⁱ	78.64 (8)	C4—C5—Hg1	159.7 (3)
C1—Hg1—O5 ⁱ	93.15 (9)	C7—C5—Hg1	81.6 (2)
C5—Hg1—O5 ⁱ	78.42 (9)	O2—C6—O1	126.5 (4)
N1—Hg1—C6	50.66 (11)	O2—C6—C1	116.9 (4)
Cl1—Hg1—C6	132.49 (8)	O1—C6—C1	116.6 (3)
O1—Hg1—C6	21.38 (10)	O2—C6—Hg1	169.9 (3)
O1W—Hg1—C6	95.82 (9)	O1—C6—Hg1	45.54 (19)
O4—Hg1—C6	120.80 (10)	C1—C6—Hg1	71.4 (2)
C1—Hg1—C6	28.14 (10)	O5—C7—O4	125.9 (4)
C5—Hg1—C6	72.81 (10)	O5—C7—C5	117.6 (3)
O5 ⁱ —Hg1—C6	101.11 (9)	O4—C7—C5	116.5 (3)
N1—Hg1—C7	50.00 (11)	O5—C7—Hg1	165.4 (3)
Cl1—Hg1—C7	125.05 (7)	O4—C7—Hg1	48.15 (19)
O1—Hg1—C7	121.87 (9)	C5—C7—Hg1	70.6 (2)
O1W—Hg1—C7	92.32 (9)	O5—C7—Hg1 ⁱⁱ	46.1 (2)
O4—Hg1—C7	21.60 (9)	O4—C7—Hg1 ⁱⁱ	120.3 (3)
C1—Hg1—C7	72.52 (10)	C5—C7—Hg1 ⁱⁱ	101.0 (2)
C5—Hg1—C7	27.86 (9)	Hg1—C7—Hg1 ⁱⁱ	147.28 (12)
O5 ⁱ —Hg1—C7	73.33 (9)	C8—N2—H1C	109.5
C6—Hg1—C7	100.66 (10)	C8—N2—H1D	109.5
N1—Hg1—O3W ⁱ	80.95 (10)	H1C—N2—H1D	109.5
Cl1—Hg1—O3W ⁱ	90.78 (6)	C8—N2—H1E	109.5
O1—Hg1—O3W ⁱ	62.42 (8)	H1C—N2—H1E	109.5
O1W—Hg1—O3W ⁱ	153.57 (8)	H1D—N2—H1E	109.5
O4—Hg1—O3W ⁱ	120.33 (8)	N2—C8—C9	110.3 (4)
C1—Hg1—O3W ⁱ	71.54 (9)	N2—C8—H8A	109.6
C5—Hg1—O3W ⁱ	91.63 (9)	С9—С8—Н8А	109.6
O5 ⁱ —Hg1—O3W ⁱ	46.93 (7)	N2—C8—H8B	109.6
C6—Hg1—O3W ⁱ	62.32 (9)	С9—С8—Н8В	109.6
C7—Hg1—O3W ⁱ	105.62 (8)	H8A—C8—H8B	108.1
N1—Hg1—C7 ⁱ	76.55 (11)	C8—C9—C8 ⁱⁱⁱ	110.6 (5)
Cl1—Hg1—C7 ⁱ	91.42 (6)	С8—С9—Н9А	109.3
O1—Hg1—C7 ⁱ	117.56 (9)	С8 ^{ііі} —С9—Н9А	109.6
O1W—Hg1—C7 ⁱ	145.03 (9)	Hg1—O1W—H1A	111.7
O4—Hg1—C7 ⁱ	62.49 (9)	Hg1—O1W—H1B	99.1

C1—Hg1—C7 ⁱ	89.81 (9)	H1A—O1W—H1B	104.6
C5—Hg1—C7 ⁱ	65.25 (9)	Hg1—O2W—H2B	56.6
O5 ⁱ —Hg1—C7 ⁱ	16.66 (8)	Hg1—O2W—H2C	150.6
C6—Hg1—C7 ⁱ	105.18 (9)	H2B—O2W—H2C	95.7
C7—Hg1—C7 ⁱ	56.86 (4)	Hg1 ⁱⁱ —O3W—H3A	103.6
O3W ⁱ —Hg1—C7 ⁱ	60.36 (7)	Hg1 ⁱⁱ —O3W—H3B	48.2
C6—O1—Hg1	113.1 (2)	H3A—O3W—H3B	94.0
N1—Hg1—O1—C6	5.0 (3)	C7—Hg1—C5—C4	-175.8 (9)
Cl1—Hg1—O1—C6	-162.6 (3)	O3W ⁱ —Hg1—C5—C4	62.7 (8)
O1W—Hg1—O1—C6	101.6 (3)	C7 ⁱ —Hg1—C5—C4	118.8 (8)
O4—Hg1—O1—C6	21.0 (3)	N1—Hg1—C5—C7	177.6 (4)
C1—Hg1—O1—C6	4.6 (3)	Cl1—Hg1—C5—C7	-26.9 (3)
C5—Hg1—O1—C6	5.7 (3)	O1—Hg1—C5—C7	176.0 (2)
O5 ⁱ —Hg1—O1—C6	-73.5 (3)	O1W—Hg1—C5—C7	83.9 (2)
C7—Hg1—O1—C6	7.8 (3)	O4—Hg1—C5—C7	8.77 (19)
O3W ⁱ —Hg1—O1—C6	-84.1 (3)	C1—Hg1—C5—C7	177.1 (3)
C7 ⁱ —Hg1—O1—C6	-58.5 (3)	O5 ⁱ —Hg1—C5—C7	-76.2 (2)
N1—Hg1—O4—C7	-15.6 (3)	C6—Hg1—C5—C7	178.2 (2)
Cl1—Hg1—O4—C7	151.8 (2)	O3W ⁱ —Hg1—C5—C7	-121.5 (2)
O1—Hg1—O4—C7	-31.7 (3)	C7 ⁱ —Hg1—C5—C7	-65.42 (19)
O1W—Hg1—O4—C7	-115.5 (3)	Hg1-O1-C6-O2	171.9 (3)
C1—Hg1—O4—C7	-19.3 (3)	Hg1-O1-C6-C1	-7.9 (4)
C5—Hg1—O4—C7	-11.2 (2)	N1—C1—C6—O2	-172.1 (4)
O5 ⁱ —Hg1—O4—C7	73.3 (3)	C2—C1—C6—O2	8.4 (6)
C6—Hg1—O4—C7	-22.9 (3)	Hg1-C1-C6-O2	-173.9 (4)
O3W ⁱ —Hg1—O4—C7	50.9 (3)	N1—C1—C6—O1	7.8 (5)
C7 ⁱ —Hg1—O4—C7	69.0 (2)	C2-C1-C6-O1	-171.7 (4)
Cl1—Hg1—N1—C5	-69.5 (6)	Hg1-C1-C6-O1	6.0 (3)
O1—Hg1—N1—C5	178.3 (3)	N1—C1—C6—Hg1	1.8 (3)
O1W—Hg1—N1—C5	88.7 (3)	C2-C1-C6-Hg1	-177.7 (4)
O4—Hg1—N1—C5	8.9 (3)	N1—Hg1—C6—O2	145.7 (18)
C1—Hg1—N1—C5	179.1 (5)	Cl1—Hg1—C6—O2	-18.5 (18)
O5 ⁱ —Hg1—N1—C5	-70.8 (3)	O1—Hg1—C6—O2	-40.5 (16)
C6—Hg1—N1—C5	-179.3 (4)	O1W—Hg1—C6—O2	-120.2 (17)
C7—Hg1—N1—C5	1.4 (3)	O4—Hg1—C6—O2	154.7 (17)
O3W ⁱ —Hg1—N1—C5	-117.9 (3)	C1—Hg1—C6—O2	147.0 (18)
C7 ⁱ —Hg1—N1—C5	-56.4 (3)	C5—Hg1—C6—O2	145.4 (17)
Cl1—Hg1—N1—C1	111.5 (4)	O5 ⁱ —Hg1—C6—O2	71.4 (17)
O1—Hg1—N1—C1	-0.8 (3)	C7—Hg1—C6—O2	146.3 (17)
O1W—Hg1—N1—C1	-90.3 (3)	O3W ⁱ —Hg1—C6—O2	44.1 (17)
04—Hg1—N1—C1	-170.2 (3)	C7 ⁱ —Hg1—C6—O2	88.0 (17)
C5—Hg1—N1—C1	-179.1 (5)	N1—Hg1—C6—O1	-173.8 (3)
O5 ⁱ —Hg1—N1—C1	110.2 (3)	Cl1—Hg1—C6—O1	22.0 (3)
C6—Hg1—N1—C1	1.6 (3)	O1W—Hg1—C6—O1	-79.8 (3)

C7—Hg1—N1—C1	-177.6 (4)	O4—Hg1—C6—O1	-164.8 (2)
O3W ⁱ —Hg1—N1—C1	63.1 (3)	C1—Hg1—C6—O1	-172.5 (4)
C7 ⁱ —Hg1—N1—C1	124.6 (3)	C5—Hg1—C6—O1	-174.1 (3)
C5—N1—C1—C2	-2.5 (6)	O5 ⁱ —Hg1—C6—O1	111.9 (3)
Hg1—N1—C1—C2	176.6 (3)	C7—Hg1—C6—O1	-173.2 (3)
C5—N1—C1—C6	178.0 (3)	O3W ⁱ —Hg1—C6—O1	84.6 (3)
Hg1—N1—C1—C6	-2.9 (5)	C7 ⁱ —Hg1—C6—O1	128.5 (3)
C5—N1—C1—Hg1	-179.1 (5)	N1—Hg1—C6—C1	-1.3 (2)
Cl1—Hg1—C1—N1	-146.6 (3)	Cl1—Hg1—C6—C1	-165.48 (17)
O1—Hg1—C1—N1	179.0 (3)	O1—Hg1—C6—C1	172.5 (4)
O1W—Hg1—C1—N1	92.3 (3)	O1W—Hg1—C6—C1	92.8 (2)
O4—Hg1—C1—N1	9.2 (3)	O4—Hg1—C6—C1	7.7 (2)
C5—Hg1—C1—N1	0.5 (3)	C5—Hg1—C6—C1	-1.6 (2)
O5 ⁱ —Hg1—C1—N1	-69.5 (3)	O5 ⁱ —Hg1—C6—C1	-75.6 (2)
C6—Hg1—C1—N1	-177.4 (4)	C7—Hg1—C6—C1	-0.7 (2)
C7—Hg1—C1—N1	1.9 (3)	O3W ⁱ —Hg1—C6—C1	-102.9 (2)
O3W ⁱ —Hg1—C1—N1	-111.8 (3)	C7 ⁱ —Hg1—C6—C1	-59.0 (2)
C7 ⁱ —Hg1—C1—N1	-53.2 (3)	Hg1 ⁱⁱ —O5—C7—O4	-99.8 (4)
N1—Hg1—C1—C2	-8.0 (7)	Hg1 ⁱⁱ —O5—C7—C5	78.1 (4)
Cl1—Hg1—C1—C2	-154.6 (6)	Hg1 ⁱⁱ —O5—C7—Hg1	-160.3 (10)
O1—Hg1—C1—C2	171.0 (8)	Hg1—O4—C7—O5	-162.9 (3)
O1W—Hg1—C1—C2	84.3 (8)	Hg1—O4—C7—C5	19.2 (4)
O4—Hg1—C1—C2	1.2 (8)	Hg1—O4—C7—Hg1 ⁱⁱ	141.68 (15)
C5—Hg1—C1—C2	-7.5 (7)	N1—C5—C7—O5	168.5 (4)
O5 ⁱ —Hg1—C1—C2	-77.5 (8)	C4—C5—C7—O5	-14.8 (5)
C6—Hg1—C1—C2	174.6 (9)	Hg1C5C7O5	166.9 (3)
C7—Hg1—C1—C2	-6.1 (7)	N1—C5—C7—O4	-13.4 (5)
O3W ⁱ —Hg1—C1—C2	-119.9 (8)	C4—C5—C7—O4	163.3 (4)
C7 ⁱ —Hg1—C1—C2	-61.2 (8)	Hg1—C5—C7—O4	-15.0 (3)
N1—Hg1—C1—C6	177.4 (4)	N1—C5—C7—Hg1	1.6 (3)
Cl1—Hg1—C1—C6	30.7 (4)	C4—C5—C7—Hg1	178.3 (4)
O1—Hg1—C1—C6	-3.58 (19)	N1—C5—C7—Hg1 ⁱⁱ	-145.6 (3)
O1W—Hg1—C1—C6	-90.3 (2)	C4—C5—C7—Hg1 ⁱⁱ	31.2 (4)
O4—Hg1—C1—C6	-173.4 (2)	Hg1—C5—C7—Hg1 ⁱⁱ	-147.18 (11)
C5—Hg1—C1—C6	177.9 (3)	N1—Hg1—C7—O5	-128.0 (12)
O5 ⁱ —Hg1—C1—C6	107.8 (2)	Cl1—Hg1—C7—O5	37.8 (12)
C7—Hg1—C1—C6	179.3 (2)	O1—Hg1—C7—O5	-131.5 (11)
O3W ⁱ —Hg1—C1—C6	65.5 (2)	O1W—Hg1—C7—O5	135.1 (11)
C7 ⁱ —Hg1—C1—C6	124.2 (2)	O4—Hg1—C7—O5	71.4 (11)
N1—C1—C2—C3	2.0 (6)	C1—Hg1—C7—O5	-128.9 (11)
C6—C1—C2—C3	-178.5 (4)	C5—Hg1—C7—O5	-126.8 (12)
Hg1—C1—C2—C3	7.7 (10)	O5 ⁱ —Hg1—C7—O5	-30.0 (11)
C1—C2—C3—O3	-179.8 (4)	C6—Hg1—C7—O5	-128.6 (11)
C1—C2—C3—C4	1.1 (6)	O3W ⁱ —Hg1—C7—O5	-64.6 (11)

O3—C3—C4—C5	177.3 (4)	C7 ⁱ —Hg1—C7—O5	-27.3 (10)
C2—C3—C4—C5	-3.6 (6)	N1—Hg1—C7—O4	160.7 (3)
O3—C3—C4—Hg1 ⁱⁱ	48.2 (5)	Cl1—Hg1—C7—O4	-33.6 (3)
C2—C3—C4—Hg1 ⁱⁱ	-132.7 (3)	O1—Hg1—C7—O4	157.2 (2)
C1—N1—C5—C4	-0.2 (6)	O1W—Hg1—C7—O4	63.7 (3)
Hg1—N1—C5—C4	-179.2 (3)	C1—Hg1—C7—O4	159.7 (3)
C1—N1—C5—C7	176.4 (3)	C5—Hg1—C7—O4	161.8 (4)
Hg1—N1—C5—C7	-2.7 (5)	O5 ⁱ —Hg1—C7—O4	-101.4 (3)
C1—N1—C5—Hg1	179.1 (5)	C6—Hg1—C7—O4	160.1 (3)
C3—C4—C5—N1	3.2 (6)	O3W ⁱ —Hg1—C7—O4	-135.9 (2)
Hg1 ⁱⁱ —C4—C5—N1	147.6 (3)	C7 ⁱ —Hg1—C7—O4	-98.7 (3)
C3—C4—C5—C7	-173.3 (3)	N1—Hg1—C7—C5	-1.2 (2)
Hg1 ⁱⁱ —C4—C5—C7	-29.0 (4)	Cl1—Hg1—C7—C5	164.56 (18)
C3—C4—C5—Hg1	1.9 (10)	O1—Hg1—C7—C5	-4.7 (2)
Hg1 ⁱⁱ —C4—C5—Hg1	146.3 (7)	O1W—Hg1—C7—C5	-98.1 (2)
Cl1—Hg1—C5—N1	155.4 (3)	O4—Hg1—C7—C5	-161.8 (4)
O1—Hg1—C5—N1	-1.6 (3)	C1—Hg1—C7—C5	-2.1 (2)
O1W—Hg1—C5—N1	-93.8 (3)	O5 ⁱ —Hg1—C7—C5	96.8 (2)
O4—Hg1—C5—N1	-168.9 (3)	C6—Hg1—C7—C5	-1.8 (2)
C1—Hg1—C5—N1	-0.5 (3)	O3W ⁱ —Hg1—C7—C5	62.2 (2)
O5 ⁱ —Hg1—C5—N1	106.2 (3)	C7 ⁱ —Hg1—C7—C5	99.5 (2)
C6—Hg1—C5—N1	0.5 (3)	N1—Hg1—C7—Hg1 ⁱⁱ	78.7 (2)
C7—Hg1—C5—N1	-177.6 (4)	Cl1—Hg1—C7—Hg1 ⁱⁱ	-115.6 (2)
O3W ⁱ —Hg1—C5—N1	60.9 (3)	O1—Hg1—C7—Hg1 ⁱⁱ	75.2 (2)
C7 ⁱ —Hg1—C5—N1	116.9 (3)	O1W—Hg1—C7—Hg1 ⁱⁱ	-18.3 (2)
N1—Hg1—C5—C4	1.9 (7)	O4—Hg1—C7—Hg1 ⁱⁱ	-82.0 (3)
Cl1—Hg1—C5—C4	157.3 (7)	C1—Hg1—C7—Hg1 ⁱⁱ	77.8 (2)
O1—Hg1—C5—C4	0.2 (8)	C5—Hg1—C7—Hg1 ⁱⁱ	79.9 (3)
O1W—Hg1—C5—C4	-91.9 (8)	O5 ⁱ —Hg1—C7—Hg1 ⁱⁱ	176.6 (2)
O4—Hg1—C5—C4	-167.0 (9)	C6—Hg1—C7—Hg1 ⁱⁱ	78.1 (2)
C1—Hg1—C5—C4	1.3 (8)	O3W ⁱ —Hg1—C7—Hg1 ⁱⁱ	142.1 (2)
O5 ⁱ —Hg1—C5—C4	108.0 (8)	C7 ⁱ —Hg1—C7—Hg1 ⁱⁱ	179.4 (3)
C6—Hg1—C5—C4	2.4 (8)	N2-C8-C9-C8 ⁱⁱⁱ	165.1 (4)
Symmetry codes: (i) $-x+1/2$, $y+1/2$, -z+3/2; (ii) -x+1/2, y-	1/2, -z+3/2; (iii) $-x+1, y, -z+3/2.$	

Hydrogen-bond	geometry ((Å,	°)
---------------	------------	-----	----

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O3—H3···O4 ^{iv}	0.92	1.63	2.548 (5)	173
N2—H1C···O3W ⁱⁱ	0.89	2.03	2.830 (5)	150
N2—H1D····O2W ^v	0.89	2.30	3.096 (6)	149
N2—H1E····O2W ^{vi}	0.89	1.96	2.824 (6)	165
O1W—H1A····O5 ⁱⁱ	0.82	2.08	2.854 (5)	157

O1W—H1B···O2 ^{vii}	0.82	2.07	2.837 (6)	157	
O2W—H2B···O1	0.85	1.98	2.771 (6)	154	
O2W—H2C···O2 ⁱⁱⁱ	0.85	1.94	2.777 (5)	169	
O3W—H3A···O3 ^{vii}	0.85	2.30	3.019 (6)	142	
O3W—H3B···O5	0.85	1.93	2.766 (6)	169	
C8—H8B…O1	0.97	2.45	3.393 (6)	163	
	1/2 1/2 12/2) 11 11 10 (1 (1)	1 1/2 () 11	

Symmetry codes: (iv) x, -y+1, z-1/2; (ii) -x+1/2, y-1/2, -z+3/2; (v) -x+1, -y+1, -z+2; (vi) x, y-1, z; (vii) x, -y+1, z+1/2; (iii) -x+1, y, -z+3/2.

Fig. 1

Fig. 2

